Cross-talk between CD14 and complement receptor 3 promotes phagocytosis of mycobacteria: regulation by phosphatidylinositol 3-kinase and cytohesin-1.

نویسندگان

  • Khalid Sendide
  • Neil E Reiner
  • Jimmy S I Lee
  • Sylvain Bourgoin
  • Amina Talal
  • Zakaria Hmama
چکیده

The glycosylphosphatidyl anchored molecule CD14 to the monocyte membrane plays a prominent role in innate immunity, and the paradigms for CD14 selective signaling are beginning to be elucidated. In this study, transfected human monocytic cell line THP-1 and Chinese hamster ovary (CHO) fibroblastic cells were used to examine phagocytosis of Mycobacterium bovis bacillus Calmette-Guerin (BCG). Flow cytometry was combined with molecular and biochemical approaches to demonstrate a dual mechanism for BCG internalization involving either CD14 alone or a CD14-regulated complement receptor (CR)3-dependent pathway. Phagocytosis by CD14-positive THP-1 cells was attenuated by phosphatidylinositol-3 inhibitors LY294002 and wortmannin and experiments using transfected CHO cells showed substantial accumulation of phosphatidylinositol-3,4,5-trisphosphate at the BCG attachment site in CHO cells expressing CD14 and TLR2 suggesting that bacteria bind to CD14 and use TLR2 to initiate a PI3K signaling pathway. Additional experiments using blocking Abs showed that anti-TLR2 Abs inhibit phagocytosis of BCG by THP-1 cells. Furthermore, knockdown of cytohesin-1, a PI3K-regulated adaptor molecule for beta(2) integrin activation, specifically abrogated CD14-regulated CR3 ingestion of BCG consistent with the observation of physical association between CR3 and cytohesin-1 in cells stimulated with mycobacterial surface components. These findings reveal that mycobacteria promote their uptake through a process of "inside-out" signaling involving CD14, TLR2, PI3K, and cytohesin-1. This converts low avidity CR3 into an active receptor leading to increased bacterial internalization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of CR3-mediated phagocytosis by MSP requires the RON receptor, tyrosine kinase activity, phosphatidylinositol 3-kinase, and protein kinase C zeta.

Macrophage-stimulating protein (MSP) promotes the phagocytosis of C3bi-coated erythrocytes by resident peritoneal macrophages, although the mechanism by which this occurs is largely unknown. We show that MSP-induced complement-mediated phagocytosis requires the RON receptor tyrosine kinase and the alphaMbeta2 integrin, as evidenced by the inability of RON-/- and alphaM-/- peritoneal macrophages...

متن کامل

Activation of CR3-mediated phagocytosis binding by MSP requires the RON receptor, tyrosine kinase activity, phosphatidylinositol 3-kinase, and protein kinase C

Macrophage-stimulating protein (MSP) promotes the phagocytosis of C3bi-coated erythrocytes by resident peritoneal macrophages, although the mechanism by which this occurs is largely unknown. We show that MSP-induced complement-mediated phagocytosis requires the reorienting negativity (RON) receptor tyrosine kinase and the M 2 integrin, as evidenced by the inability of RON / and M / peritoneal m...

متن کامل

Mycobacteria use their surface-exposed glycolipids to infect human macrophages through a receptor-dependent process.

Two subfamilies of the polar glycopeptidolipids (GPLs) located on the surface of Mycobacterium smegmatis, along with unknown phospholipids, were recently shown to participate in the nonopsonic phagocytosis of mycobacteria by human macrophages (Villeneuve, C., G. Etienne, V. Abadie, H. Montrozier, C. Bordier, F. Laval, M. Daffe, I. Maridonneau-Parini, and C. Astarie-Dequeker. 2003. Surface-expos...

متن کامل

1α,25-Dihydroxyvitamin D3–Induced Myeloid Cell Differentiation Is Regulated by a Vitamin D Receptor–Phosphatidylinositol 3-Kinase Signaling Complex

1alpha,25-dihydroxyvitamin D(3) (D(3)) promotes the maturation of myeloid cells and surface expressions of CD14 and CD11b, markers of cell differentiation in response to D(3). To examine how these responses are regulated, THP-1 cells were grown in serum-free medium and incubated with D(3). This was associated with rapid and transient increases in phosphatidylinositol 3-kinase (PI 3-kinase) acti...

متن کامل

A Regulatory Role for Src Homology 2 Domain–Containing Inositol 5′-Phosphatase (Ship) in Phagocytosis Mediated by Fcγ Receptors and Complement Receptor 3 (αMβ2; Cd11b/Cd18)

The Src homology 2 domain-containing inositol 5'-phosphatase (SHIP) is recruited to immunoreceptor tyrosine-based inhibition motif (ITIM)-containing proteins, thereby suppressing phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathways. The role of SHIP in phagocytosis, a PI 3-kinase-dependent pathway, is unknown. Overexpression of SHIP in macrophages led to an inhibition of phagocytosis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 174 7  شماره 

صفحات  -

تاریخ انتشار 2005